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Abshaet The theory of classical relativistic spinning particles with cnumber internal spinor 
variables, modelling accurately the Dirac electron, is generalized to particles with anomalous 
magnetic moments. The equations of motion are derived and the problem of spin precession 
is discussed and compared with other theories of spin. 

1. Introduction 

Although to this day the understanding of our first discovered and foremost elementary 
particle, the electron, remains far from being complete, it has in fact been advanced in 
recent years due to a consistent effort to unveil the content of a classical Lagrangian 
spinor theory for spinning particles reflecting rather accurately the properties of the 
Dirac electron. It is our purpose in the present work to generalize once more this theory 
and consider the interaction of a spinning electron, including its anomalous magnetic 
moment, with an external electromagnetic field. 

The development of classical theories for spinning particles has a long history that 
goes back to Frenkel’s [ 11 and Thomas’s [Z] first attempts to model the internal structure 
of the electron required to explain spectroscopic experiments. Similar equations were 
derived, although from different starting points, by Mattison [3], Bhabha [4] and 
Weyssenhoff and Raabe [5 ] .  Around the same time that Thomas presented his theory, 
Dirac [6] also proposed his remarkable relativistic quantum mechanical equation for 
the electron, an equation that contained in it an accurate description of the spin. But 
as is well known spin is neither the result of relativity, nor of quantum mechanics. 
Therefore much work attempted to obtain spin precession equations as a classical limit 
of Dirac’s equation. Work along these lines has been inconclusive as different classical 
equations are obtained according to the way the limits performed. 

Later when laboratory experiments allowed us to measure the total magnetic 
moment of the electron, a classical relativistic equation of motion for spin precession 
was proposed for their interpretation by Bargmann ef al (BMT) [7l. Generalizations of 
their equation to the case of inhomogeneous fields were described by Solomon [SI, 
Nyborg [9], Barut [IO] and Plathe [ll] among others. But as shown by Bacry [12], the 
BMT equation is in fact equivalent to the Thomas’s precession equation for the spinning 
electron. 

t Permanent address: Physics Department. University of Colorado, Boulder CO 80309, USA. 
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The phenomenological BMT equation was found by requiring a unique relativistic 
generalization of the rest frame precession equation for the spin together with additional 
constraints on the four-dimensional spin and velocity vector, and not starting from a 
Lagrangian as generally required in order to properly quantize the classical theory. 
Thus in general, theories obtained by conservation laws could not be consistently quan- 
tized, or when obtained from a Lagrangian, as Frenkel’s theory, the problem of quanti- 
zation has not been solved up to this day (see remarks by Ellis [13]). Moreover, the 
phenomenological constraints introduced by these theories may not represent the real 
electron. Another approach to this problem was reviewed by Mukunda et al [14]. In 
this line of development, group-theoretical methods were applied to the theory of 
extended objects including the spinning point particle. A drawback of this approach is 
that a Hamiltonian or mass operator was postulated in order to bypass Dirac’s canonical 
formalism for constrained systems. 

It has been argued that one should not be worried about quantization because the 
Dirac equation is an excellent description of the quantum electron, which is certainly 
true. But, as has been recently shown, the quantization of a classical spinning particle 
gives much more information than just Dirac’s equation 1151. 

A quite different model for spinning particles has been studied by Barut and Zanghi 
[16]. In their model the magnitude of the spin tensor is not fixed nor is the magnitude 
of velocity as had been required in every previous theory of classical spinning particles. 
Here the spin vector is oscillatory even for a free particle and thus constant only on a 
temporal average basis. As in most previous theories, the orbital coordinate of the free 
particle describes a helical motion. But, in contrast to other theories, this result is not 
considered as a defect of the theory and as a matter of fact it is necessary for the 
particle to have an internal spin motion and also arises from Dirac’s quantum equations 
[ 171. The model has been properly quantized by canonical and Schrcdinger quantization 
procedures [NI, and by path integral methods [19]. It has been extended to curved 
spaces [20], to strings and membranes of any dimension [21]. Higher spin equations 
have been obtained in flat [15] and curved spaces [22], generalizing the usual Kemmer 
equation and providing a much more satisfactory derivation of these equations. Using 
this model for spin, the classical Lorentz-Dirac equation with radiation reaction has 
been generalized to include the radiative structure of the electron [23]. Consistent 
classical theories including radiation reaction have been obtained when in interaction 
with scalar, tensor and linearized gravity [24]. A Kaluza-Klein approach has given a 
compact description for the interaction of the electron with both, gravity and electro- 
magnetism [25]. A complete symplectic geometric structure was found [16] and a mod- 
em differential geometric description in terms of complex fiber bundles exist [26]. 
Moreover, the internal geometry happens to be the same one that describes the quantum 
electron but already at a classical level. Finally, a classical formulation that parallels 
the quantum two body system was studied in detail [2q. As can be seen, one of the 
virtues of this model is its extensive generality, the others being its inner simplicity and 
completeness. 

In this work we shall consider a classical charged point particle which interacts not 
only minimally with an electromagnetic field but also throngh a Pauli anomalous 
coupling to the electromagnetic field. The BMT equation has been previously obtained 
from a Lagrangian with this sort of term but the proportionality constant was adjusted 
to the total magnetic moment [lo]. In the present case this constant will be just the 
anomalous magnetic moment as in Dirac’s quantum equation and the spin will have a 
dynamical origin. The quantum version of this classical theory has already been con- 
structed [28]. Here we shall obtain the equations of motion and therefore generalize 
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previous precession equations for the spin of the electron with an anomalous magnetic 
moment. 

2. The spinning particle and its minimal cnnpliog 

Let us start from the equations given by Bamt and Zanghi [16] for a charged spinning 
particle. We write down the action principle in terms of an invariant worldline parameter 
r to be associated later to the proper time of a well defined center of mass. The 
expression for the action reads 

WO= dz{-i;lzi+p,(Y -2y'z) +eZy'zA,}. (1) J 
Here the variables z and i=z+yo are fourcomponent classical complex spinor variables 
which are functions of z and represent the internal structure of the electron, i.e. the 
spin. The mass does not enter into this action but comes in as the value of the integral 
of motion H= %y'zn,, where n, =p, - eA, is the kinetic momentum. 

A simplectic structure is given to the time development of the particle's motion by 
defining the Poisson bracket 

Using this bracket it can easily be verified that z and G form a canonical set of conjugate 
variables. The pair of 'external' variables {9',p"], also form a set of conjugate variables 
which together with the four-component spinors form a complete set of dynamical 
variables for the electron. 

The equations of motion that follow from this Lagrangian are (L=1) 

(3)  
Z=-i$p,-eA,)y" i= i(p, - eA,) y"z 

p, =eA,,,i" 2, =iy,z. 

Now, by introducing the velocity U ,  =iy,z, and the spin tensor S , v ~ - $ [ y , , ,  y J z ,  
we get a different, but equivalent, complete set of dynamical equations 

where F," = A"., - A,," is the electromagnetic field. 

phenomenologically assumed from the beginning, 
While in previous theories for spinning particles the following conditions are usually 

u'u, =constant SpvSPv =constant u'S,,=O (5) 
in this theory it can be verified that 

U%, = (d+ Id) 
S,,S," = (w: - &)/Z 

#S,,= +i(w2vV)/2 
where q"= -iZy5y"z and the quantities WI and w2 are defined by w1=2z and w2=Gy5z. 
Note that w1 is a constant of the motion. 
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By direct differentiation of w2 and after making use of the equations of motion one 
obtains the following second-order differential equation for w2 : 

w2+4ffZw2=2e i?fu"FvP . (7) 
As one can see the constraints ( 5 )  are only true in our case when w2 =O which in general 
may hold only on the average. 

A similar second-order equation can also be deduced for the spinor 5 (or z) 

i?+ z2i= -ie,?y~u"F,,. (8) 
The helical motion solution, also called Zitterbewegung, for a free particle then follows 
directly from this equation. 

Let us look at the quantity 

&py= &&3u+ q s y n  + 7rEysap (9) 
considered previously by Barut and Zanghi [16]. In the presence of an external field 
we find that it obeys the equation of motion 

% r , ~ ~  =eu"(F,,Sp, + Fyvsya). (10) 

SP,,+4n2S,;= +Z,:,,+eu"(F,.u, - F,,u,) . 

Then, introducing X,+4npECv we obtain the equation of motion for the spin tensor 
&I": 

(11) 
For a free particle, in particular, E is a constant of the motion and the spin tensor has 
an oscillatory motion, just like its velocity or position. 

We can now define a centre of mass by noting that only the total angular momentum 
J of the charge, defined by J,,=xv7r,-x,r,+S,,, is conserved for a free particle. 
Wntmg x, = X, + Q, , where X, is the centre of mass coordinate and Q, the intemal 
relative coordinate position given by 

P".  . 

the total angular momentum J," can also be cast into the form 
- 

JPv = 1," + S,, (13) 
where .&.=X,q , -~ ,z . ,  can be interpreted as the orbital angular momentum of the 
centre of mass and S,,=S,,,- Q,,ffv+ Qvn, the spin of the centre of mass. 

Since the first derivative of Q9 is 

where z2=s"z,, and zFu-z,u~F~~, the relative position obeys a second-order equa- 
tion which reduces to the equation of a harmonic oscillator when free of any external 
field. 

3. Anomalous coupling and spin precession 

We shall include into this theory the effect of the coupling between the anomalous 
magnetic moment of the particle and an external electromagnetic field by taking as a 
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starting point the action 

W=Wo+p dri[y,, yv]~F'" (15) s 
with p a coefficient proportional to the anomalous magnetic moment and WO is as 
defined before. This constant is, for an electron, the result of the coupling to its self- 
field [29] but may be also an intrinsic property of the particle. 

The equations of motion that follows from the action are (A= -1) 
ii = - ~ ( p ,  - eA,) y" + pi[y , ,  y .IF P y  

-e = - ( p ,  - eA,) y"z + .U [ y, , y,]zF ," 
P,  =eAv,,2"+pz[yn, y&F$ 
2, = zy,z 

2, =U, 

tip = +4S,,zp+ 8ipuaF,%,, 

SPv= -u,zn,+ zpu,- Sip {SVBFpP - S,,F,'J 

~, = eFuPup +4ipSaBF $. 

or by using the variables S,,, z,, U, and x, as before, we have 

From b) it can be seen that S,,n"#O and from (6) thr SPVz Thus we cannot 
define thc lual spin vector and its inverse either with z or with U alone. We therefore 
generalize the dual spin vector by using the linear combinations, 
w, = au, + bz, , w; =ah, + b'n, where a, b, a', b' are constants. Then a definition for 
the spin vector would be 

(18) = Pr s, = -&*&.W s 
and its inverse 

where ww' = w"w;. As a result the equation of motion for the spin-four vector (choosing 
a = 0 for simplicity) reads for homogeneous fields 

(20) 
e 8 ip 

KW' R W  

where we indicate the antisymmetrization.of indices by the square bracket. 

attached to the centre of mass. For this quantity we obtain the equation 

S,=-S~,wblFa'uq-8 i p S p F P p + y  {wi,,SPIFfiaz") 

We also give the result for the equation of motion for s,,, the spin thought to be 

jgV = ~ " Q r 3 , 1 .  +4ipQr~S .aF~~-8 i~S[ , ,F ," , -8 ipn"n~S~,~F,11  B 

- 2 { e z F u + 4 i p ~ ~ S , p F ~ ~ }  nazbS"la 
z3 

with Q, as given in (12). 
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Equations (20) and (21) can be considered to be OUT main results as they constitute 
the analogue of the BMT equation 

e e 
2m 2.m 

SPv=g- FbpSPv1 + (g- 2) - uwupF “’Sa,l. 

In terms of the dual vector defined by (if 3= 1) 
s, = f&p.pru CI s Br 

the BMT equation becomes 

Note that the third term in (21) proportional to p has essentially the form of the 
BMT equation (22), however, in the latter, the coefficient is assumed to be the total 
magnetic moment g= (2+ a). The Dirac and Pauli couplings thus lead to different spin 
equations. The precession motion of the spin is, in fact, hidden in expression (20) due 
to the helical motion of the particle. Recall that for the quantum Dirac equation also 
the simple spin precession equation is obtained only after taking the matrix elements 
1301 and that the BMT equation does not hold for the exact operator form of the spin 
equations. 

The limit of our equations (20) and (21) to the classical BMT equation (22) and 
(23) can be seen if we separate the rapidly oscillatingzitterbagung from the dynamical 
variables U,, , z, and S,, by requiring 

(24) a,Spn,=Spii& == S.m6,, s2 = m2 

and 2= 1, a‘=O, in (20). Here the bar means that we are taking an average over time. 
The result of this process is 

Thus after the identification {16ipm}/e=a where a=g-2 is the anomalous mag- 
netic moment, one obtains the BMT equation (22). It can be verified that equation of 
motion (21), in spite of its appearance, also has the form of a precession equation after 
performing the corresponding average. Finally, it should be noted that the dynamical 
variables appearing in the BMT equation correspond in our case to the temporal average 
of the velocity and the spin vector of the electron with zitterbewegung. The limiting 
procedure (24) will be discussed in detail elsewhere. Before any such averages,’ however, 
our exact spin precession equation (20) is 

4. Conclusions 

To recapitulate, the coupling between the anomalous magnetic moment of a particle 
and external fields plays a prominent role in its time development. For instance, at 
short distances very strong interactions can arise due to the anomalous coupling to the 
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electromagnetic field which for two- (or more) body quantum systems results in 
extremely close bound states corresponding to resonances as observed in nature [31]. 
It was therefore of interest to extend the single-event (from the point of view of the 
recently studied single-event theory of quantum mechanics [32] spinor theory for spin- 
ning particles with Dirac coupling to the more realistic situation of a spinning particle 
with anomalous magnetic moment interacting with an external field. We believe that 
the equations obtained here are the correct relativistic generalization for the motion of 
the spinning electron because we have started from a theory that does not contain 
arbitrary constraints. Moreover, as mentioned in the introduction, success of this model 
in describing a Dirac electron is impressive. It happens that the coupling between the 
internal and the external motions of the electron is just too subtle to be found by using 
only conservation laws without having started from a Lagrangian. 

In a similar way that the non-relativistic limit of this theory gives the usual equation 
for the spin precession, a new quantum mechanical Pauli l i t  of Dirac's equation 
(which cannot be obtained from the square of the latter equation) follows from the 
application of these methods to the Dirac equation. This will be the subject of a future 
publication. We also plan to present elsewhere a consistent classical electrodynamics 
for particles with magnetic dipole moments, i.e. the derivation of radiation reaction 
terms for the equations of motion presented in this paper. 
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